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1 Lecture I: Introduction

1.1 Evidence of Baryon number asymmetry

Standard cosmology: Big Bang → inflationary expansion (effectively set curvature = 0)
→ expansion continued, yet the expansion rate determined by which component of the
Universe density dominated the total energy density

Dark energy ∼ 70%

Dart matter ∼ 30%

WMAP:

Ωdark energy = 0.73± 0.04 (1)
Ωmatter = 0.27± 0.04 (2)

where Ω ≡ ρ0/ρc and ρc is the density corresponds to a closed Universe now, ρc =
3H2

0/8πGN .

Ωmatter :
{

ΩB = 0.044± 0.004
Ωγ : neglegible

(3)

Thus
ΩDM

Ωmatter

∼ 85% (4)

⇒ big puzzles:

• nature of dark energy?

• what is dark matter?

• why ΩB so small?

Measuring nB/nγ ' 6× 10−10:

• photon density: directly follow from CMB temperature measurement and from BE
statistic

Tnow ' 30K ⇒ nγ ' T 3
now ∼ 400/cm3 (5)

• baryon density nB ∼ 1/m3 from:
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1. anisotropies in CMB

ΩB = 0.044 can be used to infer the ratio of number density of baryons to
photons in the Universe, which is measured independently from primodial nu-
cleosynthesis of light elements

2. BBN:

primodial Deuterium abundance ↔ agree with WMAP
4He, 7Li ↔ discrepancies [may have underestimated errors]

Deuterium abundance ⇒
nB

nγ
≡ ηB = (6.1± 0.3)× 10−10 (6)

Relate ηB ∼ 10−10 to matter-antimatter asymmetry:

if the Universe is matter-antimatter symmetric at T ∼ 1 GeV, as the Universe cools further
and the inverse process 2γ → B+B becomes ineffective due to the Boltzmann factor

ηB reduces dramatically as a result of the annihilation process: B +B → 2γ

nB

nγ
=
nB

nγ
' 10−18 (7)

⇒ a primodial matter-anitomatter asymmetry has to exist at T ∼ 1 GeV

In reality, ηB measures

ηB =
nB − nB

nγ
= (6.1± 0.3)× 10−10 (8)

(more details, see Scott Dodelson’s lectures)

1.2 Sakharov’s three conditions

hypothesis: the observed expanding Universe originated from a superdense initial state
with Ti ∼Mpl. dynamical generation of baryon asymmetry can occur if there exist

• violation of B

• violation of C and CP

• departure from thermal equilibrium
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1.2.1 Baryon number violation

This condition is obvious since we start from a baryon symmetric universe (B=0) and to
evolve it to a universe where B 6= 0. Baryon number violation is thus mandatory.

B-violation in GUT:

natural in GUT as quarks and leptons are in the same irrep

it is thus possible to have gauge bosons and scalars mediating interactions among fermions
having different B number

B-violation in EW

SM: B and L accidental symmetries, not possible to violate at tree level

t’Hooft 1976: non-perturbative instanton effects may give rise to processes that violate
(B + L), but preserve (B − L)

classically, B and L are conserved:

JB
µ =

1
3

∑
i

(
qLγµqL − uc

Lγµu
c
L − d

c
Lγµd

c
L

)
(9)

JL
µ =

∑
i

(
`Lγµ`L − ecLγµe

c
L

)
(10)

B =
∫
d3xJB

0 (x) (11)

L =
∫
d3xJL

0 (x) (12)

at quantum level, B and L are anomalous:

∂µj
µ
B = ∂µj

µ
L = nf

(
g2

32π2
W a

µνW̃
aµν − g′2

32π2
FµνF̃

µν

)
(13)

⇒

(B − L) conserved: ∂µ(JB
µ − JL

µ ) = 0

(B + L) violated due to the vacum structure of non-abelian gauge theories. divergence of
the current:

∂µ(JB
µ + JL

µ ) = 2nF∂µK
µ (14)
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change in B and L related to change in topological charges:

B(tf )−B(ti) =
∫ tf

ti

dt

∫
d3x∂µJB

µ = nf [Ncs(tf )−Ncs(ti)] (15)

Ncs(t) =
g3

96π2

∫
d3xεijkε

IJKW IiW JjWKk (16)

vacuum to vacuum transition:

W Ii: pure gauge configuration

Ncs: integers ∆Ncs = ±1, ±2, ... ∆B = ∆L = nf∆Ncs

in SM: ∆B = ∆L = ±3

SU(2) instanton ⇒ effective 12 fermion interaction

OB+L =
∏

i=1,2,3

(qLiqLiqLiLLi) (17)

at T=0, transition rate: Γ ∼ e−Sint = e−4π/α = O(10−165), negligible!

In thermal bath: transition can be made not by tunneling but through thermal fluctua-
tion

T = 0 : Γ = e−4π/α = 10−165 (18)

T < TEW : Γ = e
−MW
αkT (19)

T = TEW : Γ = αT 4 (20)

Thus for T > TEW , things become very interesting – Baryon number violation is unsup-
pressed and copious!

1.2.2 C and CP violation

A toy model:
L = g1Xf

†
2f1 + g2Xf

†
4f3 + g3Y f

†
1f3 + g4Y f

†
2f4 + h.c. (21)

where f1,..,4: fermion states; X,Y : heavy scalars

L leads to the following processes:

X → f1 + f2, f3 + f4 (22)
Y → f3 + f1, f4 + f2 (23)
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at tree level:
Γ(X → f1 + f2) = |g1|2IX = Γ(X → f1 + f2) = |g∗1|2IX (24)

where the phase space factora IX = IX thus ⇒ ε = 0

at one-loop:

Γ(X → f1 + f2) = g1g
∗
2g3g

∗
4IXY + c.c. (25)

Γ(X → f1 + f2) = g∗1g2g
∗
3g4IXY + c.c. (26)

Now IXY includes kinematic factors arising from integrating over the internal momentum
loop due to J exchange in I decay

IXY = complex: if f1,..4 are allowed to propagate on-shell

Therefore,

Γ(X → f1 + f2)− Γ(X → f1 + f2) = 4iIm(IXY )Im(g1g∗2g3g
∗
4) (27)

Total asymmetry due to X and Y decays:

εX =
4

ΓX
Im(IXY )Im(g∗1g2g

∗
3g4)[(B4 −B3)− (B2 −B1)] (28)

εY =
4

ΓY
Im(I ′XY )Im(g∗1g2g

∗
3g4)[(B2 −B4)− (B1 −B3)] (29)

To have non-zero asymmetry, three conditions have to be satisfied:

• two baryon number violating bosons, each of which has mass greater than the sum
of the internal loop fermion masses

• C and CP violation arise from interference between 1-loop and tree diagrams, and
manifest itself in complex coupling constants

• X, Y have non-degenerate masses

1.2.3 Departure from thermal equilibrium

In equilibrium,

< B >T = Tr(e−βHB) = Tr[(CPT )(CPT )−1e−βHB)] (30)
= Tr(e−βH(CPT )−1(CPT )] = −Tr(e−βHB)

thus < B >T = 0 in equilibrium ⇒ consequence of CPT invariance.

Departure from thermal equilibrium can be achieved by
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• out-of-equilibrium decay : GUT Baryogenesis, Leptogenesis

• EW phase transition : EW Baryogenesis

• dynamics of topological defects

out-of-equilibrium decays:

necessary non-equilibrium condition provided by expansion of the Universe

when expansion rate is faster than key particle interaction rates ⇒ departure from thermal
equilibrium can result

in the expanding universe, the initial abundance of X and X is thermal: i.e. nX = nX ∼
nγ

in LTE (local thermal equilibrium),

nX = nX ' nγ for MX . T (31)

nX = nX ' (MXT )3/2e−MX/T � nγ for T . MX (32)

when interactions which create and destroy (decay, annihiliation, and their inverse pro-
cesses) the X and X are occurring rapidly on the expansion time scale, i.e. Γ > H ⇒
equilibrium

scale of rates of processes involving X and X relative to the expansion rate determined by
MX . if X heavy enough, Γ/H becomes smaller ⇒ less effective

∗ departure from thermal equilibrium

Γ
H
< 1 (33)

⇒ over abundance of X and X

precise computation⇒ need to solve Boltzmann equations (more details in Lecture II)

1.2.4 Relating Baryon and Lepton asymmetries

In weakly coupled plasma: can assign a chemical potential µ to each of the quark, lepton
and Higgs field.

In SM: 1 Higgs, Nf generations of fermions ⇒ 5Nf + 1 chemical potentials:

ni − ni =
1
6
gT 3

{
βµi +O((βµi)3), fermions
2βµi +O((βµi)3), bosons

(34)
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Thermal equilibrium of the following processes:

1. Sphaleron process generated by OB+L:

∑
i

(3µqi + µ`i
) = 0 (35)

2. SU(3) QCD instanton process⇒ interaction between LH and RH quarks,
∏

i(qLiqLiu
c
Ri
dc

Ri
)∑

i

(2µqi − µui − µdi
) = 0 (36)

3. at all temperatures, total hypercharge of plasma vanishes:∑
i

(µqi + 2µui − µdi
− µ`i

− µei +
2
Nf

µH) = 0 (37)

4. require Yukawa and gauge interactions all in equilibrium:

µqi − µH − µdj
= 0 (38)

µqi + µH − µuj = 0 (39)
µ`i
− µH − µej = 0 (40)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis, this is the case for
gauge interactions. For Yukawa interactions, however, they are in equilibrium only in a
more restricted temperature range. But these effects are small, and thus will be neglected
in these lectures.

Baryon number density: nB = 1
6gBT

2

Lepton number density: nL = 1
6gLiT

2

Baryon number and Lepton number in terms of chemical potentials:

B =
∑

i

(2µqi + µui + µdi
) (41)

L =
∑

i

Li (42)

Li = 2µ`i
+ µei (43)
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Impose the equilibrium conditions between different generations, µ`i
= µ` and µqi =

µq:

µe =
2Nf + 3
6Nf + 3

µ`, µd = −
6Nf + 1
6Nf + 3

µ`, µu =
2Nf − 1
6Nf + 3

µ` (44)

µq = −1
3
µ`, µH =

4Nf

6Nf + 3
µ` (45)

The corresponding B and L asymmetries:

B = −4
3
Nfµ` (46)

L =
14N2

f + 9Nf

6Nf + 3
µ` (47)

Thus B, L and B − L are related by:

B = cs(B − L), L = (cs − 1)(B − L), where cs =
8NF + 4

22Nf + 13
(48)

For models with NH Higgses:

cs =
8NF + 4NH

22Nf + 13NH
(49)

1.3 Mechanisms for Baryogenesis and their problems

1.3.1 GUT baryongenesis

A single particle physics interaction at high energy (T):

G→ H → .....→ SU(3)c × SU(2)L × U(1)Y → U(1)EM (50)

Examples: SU(5), SO(10), ... (see Kaladi Babu’s lectures)

B-violation natural:

• quarks and leptons in same representations

• super heavy gauge bosons mediate B-changing processes

C and CP violation: naturally built into the theory

equilibrium:

• GUTs effective at very early times
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• cosmic expansion was much faster then (faster than the interactions of gauge bosons)

• decays are inherently out-of-equilibrium Γ < H

Problems:

• requires high reheating temperature after inflation. can lead to dangerous production
of relics – gravitino and moduli problems

• GUT predicts topological remnants (monopoles)

• extremely hard to test experimentally – can’t probe the GUT scale using colliders

• EW theory violates baryon number and can erase pre-existing asymmetry

1.3.2 EW baryogenesis

departure from thermal equilibrium provided by strong 1st order PT

advantages:

• can be probed in collider experiments

problems: allowed parameter space very small

• require more CPV than provided in SM (may be found in SUSY)

• need strong enough first order phase transition

• in MSSM, this translates into a strong bound on Higgs mass: mH . 120 GeV

• stop mass needs to be smaller than, or of the order of, top quark mass

1.3.3 Affleck-Dine Baryogensis

involve cosmological evolution of scalar fields carrying B-charge

most naturally implemented in SUSY theories

face the same challenges as in GUT Baryogenesis and in EW Baryogenesis

1.4 Neutrino Oscillation and Leptonic CP Violation

Sources of CP violation:

• CP violation in CKM matrix of SM
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• CP violation in MSSM

• CP violation in lepton sector

1.4.1 leptonic CPV

if neutrinos are Majorana particles (which is the case if its small mass is explained by seesaw
mechanism), the Majorana condition then forbids the phase redefinition of NR

⇒ additional CP violating phases in lepton sector

CP violation at high energy:

consider SM + νR:

L = `Liiγ
µ∂µ`Li + eRiiγ

µ∂µeRi +NRiiγ
µ∂µNRi (51)

+fijeRi`LjH
† + hijNRi`LjH − 1

2
MijNRiNRj + h.c.

choose a basis where fij and Mij are diagonal

The Yukawa matrix hij in this basis is in general complex

for 3 families: h has 9 phases, out of which, 3 can be absorbed into wave functions of `Li

⇒ 6 physical phases

CPV at low energy

integrate out the heavy Majorana neutrinos:

Leff = `Liiγ
µ∂µ`Li + eRiiγ

µ∂µeRi + fiieRi`LiH
† (52)

+
1
2

∑
k

hT
ikhkj`Li`Lj

H2

Mk
+ h.c.

⇒ −1
2Mνij`Li`Lj

H2

<H>2

Majorana mass matrix symmetric:

⇒ Mνij has 6 complex independent elements

⇒ 6 phases: 6 - 3 = 3 physical phases

UMNS =

 c12c13 s12c13 s13
−s12c23 − c12s23s13e

iδ c12c23 − s12s23s13eiδ s23c13e
iδ

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13eiδ c23c13e

iδ

 (53)

11



·

 1
eiα21/2

eiα31/2


the Dirac phase δ:

P (να → νβ) = δαβ − 4
∑
i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2(∆m2

ij

L

4E
) (54)

+2
∑
i>j

JCP sin2(∆m2
ij

L

4E
)

where
JCP = − Im(H12H23H31)

∆m2
21∆m

2
32∆m

2
31

, H ≡ (M eff
ν )(M eff

ν )† (55)

Majorana phases α21 and α31: (see Petr Vogel’s lectures)

|〈mee〉|2 = m2
1 |Ue1|4 +m2

2 |Ue2|4 +m2
3 |Ue3|4 + 2m1m2 |Ue1|2 |Ue2|2 cosα21 (56)

+2m1m3 |Ue1|2 |Ue3|2 cosα31 + 2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21)

Thus only 3 out of the 6 high energy phases are related to low energy observables (will
come back to this in Lecture III)

also, we only know how to probe experimentally two of the three low energy phases [See
Boris Kayser’s lectures]

Leptogenesis interesting as the high energy baryon asymmetry is in principle entirely de-
termined by the neutrino properties.
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2 Lecture II: standard scenarios

2.1 Standard Leptogenesis (Majorana neutrinos)

2.1.1 GUT Baryogenesis Revisit

A toy model:

(this subsection closely follow Buchmuller’s)

consider heavy particles X = X in thermal bath with CP violating and B-violating de-
cays

X → a+ b, X → a+ b (57)

with B(b) = −B(b) = −1 and B(a) = −B(a) = 0

Suppose a and b are massless and in thermal equilibrium in a plasma with a large number
of degrees of freedom, i.e. g∗ � 1

Assume that at some temperature T0 > MX , X is not in thermal equilibrium. But, due to
processes at high T, one has

nX =
gX

2
nγ (58)

where nγ is the number density of the photons.

CP asymmetry of the partial widths is

Γ(X → a+ b) =
1
2
(1 + ε)Γ, Γ(X → a+ b) =

1
2
(1− ε)Γ (59)

with ε� 1.

Since X is out of equilibrium at T0 > MX , it cannot follow the exponential drop of the
equilibrium distribution neq

X at T ∼MX : (i.e. over abundance)

Baryon asymmetry generated in X decays:

nB − nB

nγ
= ε

nX

nγ
=
yX

2
ε (60)

where the change in temperature due to X-decays has been neglected.

interactions with thermal bath:

• decays
X → a+ b, X → a+ b (61)
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• inverse decays
a+ b→ X, a+ b→ X (62)

In thermal equilibrium, number densities should not change, in particular no baryon asym-
metry should be generated. check:

ṅX + 3HnX = −γeq(X → a+ b) + γeq(a+ b→ X) (63)
−γeq(X → a+ b) + γeq(a+ b→ X)

where γeq is the reaction density, # of reactions/time× volume

CPT invariance:

γeq(a+ b→ X) = γeq(X → a+ b) (64)
γeq(a+ b→ X) = γeq(X → a+ b) (65)

⇒ ṅX + 3HnX = 0

Baryon density:

ṅX + 3HnX = γeq(X → a+ b)− γeq(a+ b→ X) (66)
= γeq(X → a+ b)− γeq(X → a+ b)

∝ 1
2
(1 + ε)− 1

2
(1− ε)

= ε 6= 0 (?)

Consider 2 → 2 processes: a+ b→ a+ b etc.

Reaction densities:

γ(X → ab) =
∫
dΦ123fX(p1)|M(X → ab)|2 (67)

γ(ab→ ab) =
∫
dΦ1234fa(p1)fb(p2)|M′(ab→ ab)|2 (68)

where

dΦ1,...,n =
d3p1

(2π)32E1
...

d3pn

(2π)32En
· (2π)4δ4(p1 + ...− pn) (69)

is the phase integration over particles in initial and final states and

fi(p) = exp(−βEi(p)), ni(p) = gi

∫
d3p

(2π)3
fi(p), i = N, `, H at T = 1/βi (70)

M and M′: scattering matrix elements of the indicated processes at T = 0
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Note:
|M′(ab→ ab)|2 = |M(ab→ ab)|2 − |Mris(ab→ ab)|2 (71)

Unitarity of the S-matrix:∑
i

(|M(ab→ i)|2 − |M(i→ ab)|2) = 0 (72)

where i denotes intermediate states

i = a′b′, a′b
′, integration over phase space

Ea′ + Eb′ = Ea + Eb = E (73)

Thus ∑
ab,a′b′

(|M(ab→ a′b
′)|2 − |M(a′b′ → ab)|2) = 0 (74)

change of baryon density:

ṅb + 3Hnb = γeq(X → ab)− γeq(ab→ X) (75)
+γeq(ab→ ab)− γeq(ab→ ab)

From narrow width approximation:

γeq(ab→ ab)− γeq(ab→ ab) = −εγeq
0 (76)

where
γeq

0 = γeq(X → ab) + γeq(X → ab) (77)

Thus contributions from 2 → 2 processes cancel those from decays and inverse decays.

Boltzmann equations for non-equilibrium:

ṅX + 3HnX = −(
nX

neq
X

− 1)γeq
0 (78)

ṅB + 3HnB = εγeq
0 (

nX

neq
X

− 1)− 1
2
γeq

0

nB

neq
B

− 2γeq
2→2

nb

neq
b

(79)

Applications:

SU(5) GUTs offer candidates for X: heavy gauge bosons (V) or heavy leptoquarks (S),
which have B-non-conserving decays:

V → `Lu
c
R, B = −1

3
, B − L =

2
3

(80)
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qLd
c
R, B =

2
3
, B − L =

2
3

(81)

S → `LqL, B = −1
3
, B − L =

2
3

(82)

qlqL, B =
2
3
, B − L =

2
3

(83)

Since B-L is conserved, i.e. V and S carry B-L charge, no B-L can be generated dynamically.
And due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0.

In SO(10) GUTs, B-L is spontaneously broken and particles with MX < MB−L can gen-
erate a B-L asymmetry. For MX ∼ MGUT ∼ 1015GeV , the CP asymmetry ε is sup-
pressed.

One also has to worry about the large reheating temperature T ∼MGUT after the inflation,
the realization of thermal equilibrium, and in SUSY case, the gravitino problem. These
difficulties lead to interest in EW baryogenesis.

BUT...

SO(10) GUTs predict the existence of RH neutrinos,

ψ(16) = (qL, uc
R, e

c
R, d

c
R, `L, ν

c
R) (84)

For hierarchycal fermion masses, one easily has

MN �MB−L ∼MGUT (85)

where N = νR + νc
R is a Majorana fermion.

The decays,
N → `H, N → `H (86)

where H is the SU(2) Higgs doublet, can lead to a lepton asymmetry and, after sphaleron
processes, to a baryon asymmetry [X = N , b = `, a = H in the toy model]

2.1.2 Leptogenesis

most general Lagrangian involving charged leptons and neutrinos:

LY = fijeRi`LjH
† + hijνRi`LjH − 1

2
Mijν

c
Ri
νRj + h.c. (87)

〈H〉 = v, me = fv1, mD = hv �M (88)
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⇒ light and heavy neutrino masses:

ν ' V T
ν νL + V ∗ν ν

c
L, N ' νR + νc

R (89)

with masses
mν ' −V T

ν m
T
D

1
M
mDVν , mN 'M (90)

T < M : RH neutrinos can generate a lepton asymmetry by means of out-of-equilibrium
decays

Sphaleron processes: ∆L→ ∆B

2.1.3 the asymmetry

decay at tree level: Ni → H + `L

total decay width is

ΓDi = Γ(Ni → H + `L) + Γ(Ni → H† + `†L) =
1
8π

(hh†)iiMi (91)

out-of-equilibrium condition:

ΓD1 < H

∣∣∣∣
T=M1

(92)

this leads to the following constraint on the effective light neutrino mass

m̃1 = (hνh
†
ν)11

v2
2

M1
' 4

√
g∗

v2
2

Mpl

ΓD1

H

∣∣∣∣
T=M1

< 10−3eV (93)

where g∗ = number of relativistic degrees of freedom. For SM, g∗ ' 106.75, while for
MSSM, g∗ ' 228.75.

heavy neutrinos are not able to follow the rapid change of the equilibrium particle distri-
bution, once the temperature dropped below the mass M1

eventually, heavy neutrinos will decay, and a lepton asymmetry is generated due to the
CP asymmetry that arises through the inteference of the tree level and one-loop dia-
grams:

ε1 =
Γ(N1 → `H)− Γ(N1 → `H)
Γ(N1 → `H) + Γ(N1 → `H)

(94)

' 1
8π

1
(hνhν)11

∑
i=2,3

Im

{
(hνh

†
ν)

2
1i

}
·
[
f

(
M2

i

M2
1

)
+ g

(
M2

i

M2
1

)]
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one-loop vertex corrections:

f(x) =
√
x

[
1− (1 + x) ln

(
1 + x

x

)]
(95)

one-loop self-energy:

g(x) =
√
x

1− x
(96)

For M1 �M2, M3:

ε1 ' −
3
8π

1

(hνh
†
ν)11

∑
i=2,3

Im

{
(hνh

†
ν)

2
1i

}
M1

Mi
(97)

The amount of lepton asymmetry generated is given by,

YL ≡
nL − nL

s
= κ

ε

g∗
(98)

Net lepton number produced per decay,

∆L =
1

ΓX

∑
n

[Γ(X → fn)− Γ(X → fn)] (99)

Out-of-equilibrium condition:

r ≡ Γ1

H|T=M1

=
Mpl

(1.7)(32π)
√
g∗

(hνh
†
ν)11

M1
< 1 (100)

(i) If r � 1 for TD . MX : inverse decay and 2-2 scattering impotent:

ΓID

H
∼

(
MX

T

)3/2

e−MX/T · r (101)

ΓS

H
∼ α

(
T

MX

)5

· r (102)

⇒ inverse decay and scattering can be safely ignored

⇒ ∆B produced by decays is not destroyed by −∆B produced by inverse decays and
scatterings
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at T ' TD, nX ' nX ' nγ

⇒ net baryon neumber density produced by out-of-equilibrium decays is

nL = ∆L · nX ' ∆L · nγ (103)

(ii) For r � 1:

abundance of X and X tracks the equilibrium values

⇒ no departure from thermal equilibrium

⇒ no lepton number may evolve [see sec. 2.1.1 on general GUT baryogenesis discus-
sion]

n` − n`

dt
+ 3H(n` − n`) = ∆γeq = 0 (104)

In general, for 1 < r < 10, there could still be sizable asymmetry. The wash out effects
due to inverse decay and lepton number violating scattering processes together with the
time evolution of the system is then accounted for by the factor κ, which is obtained by
solving the Bolzmann equations for the system (next section). An approximation is given
by [see Kolb and Turner,“The Early Universe”],

106 . r : κ = (0.1r)1/2e−
4
3
(0.1)1/4

(< 10−7) (105)
10 . r . 106 : κ = 0.3

r(ln r)0.8 (10−2 ∼ 10−7) (106)

0 . r . 10 : κ = 1
2
√

r2+9
(10−1 ∼ 10−2) (107)

The EW sphaleron effects then convert YL into YB:

YB ≡
nB − nB

s
= cYB−L =

c

c− 1
YL (108)

2.1.4 Boltzmann equations

out-of-equilibrium processes: generally treated by Boltzmann equations

main processes in thermal bath for leptogenesis:

• decay of N: [D]
N → `+H, N → `+H (109)
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• inverse decay of N : [ID]

`+H → N, `+H → N (110)

• 2-2 scattering:

– ∆L = 1 scattering:

N1`(`) ↔ t(t)q(q) [H, s], N1t(t) ↔ `(`)q(q) [H, t] (111)

– ∆L = 2:
`H ↔ `H [H], ``↔ HH, ``↔ HH [H, t] (112)

Boltzmann equations:

dNN1

dz
= −(D + S)(NN1 −N

eq
N1

) (113)

dNB−L

dz
= −ε1D(NN1 −N

eq
N1

)−WNB−L (114)

where
(D,S,W ) ≡ (ΓD,ΓS ,ΓW )

Hz
, z =

M1

T
(115)

ΓD: include both decay and inverse decay

ΓS : include ∆L = 1 scattering processes

ΓW : inverse decay, ∆L = 1, ∆L = 2 scattering

2.2 Dirac Leptogenesis

Could Leptogenesis occur without lepton number violation (Dirac neutrinos)?

Majorana masses:

mν ∼
v2
EW

MGUT
, ∆m2

atm →MGUT ∼ 1015GeV (116)

Dirac mass from SUSY breaking:

mν ∼
msoft

MGUT
· vEW , ∆m2

atm →MGUT ∼ 1016GeV with msoft ∼ 1 TeV (117)

Recall: Sphaleron effects
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• only LH particles coupled to Sphalerons

• change (B+L) but not (B-L)

• Sphaleron effects in equilibrium for TEW . T

”Majorana” leptogenesis:

(i) RH neutrino decays ⇒ ∆L 6= 0

(ii) Sphaleron convert ∆L partially into ∆B

How not to equilibrate νR?

Dirac neutrinos: L ⊃ λ`LφνR

LR conversion involving Dirac Yukawa couplings:

For LR conversion not to be in equilibrium:

ΓLR . H, for TEW . T (118)

Thus for mD < 10 keV ⇒ condition satisfied

Dirac leptogenesis:

(i) two stores of ∆L generated: ∆LνL and ∆Lother

(ii) sphaleron convert ∆LνL (but not ∆Lother) into ∆B

(iii) LR equilibration occurs late (at T � TEW )

A SUSY realization:

Table 1: field content
U(1)L U(1)N SU(2)L U(1)Y

N -1 +1 1 0
L +1 0 2 -1/2
Hu 0 0 2 1/2
φ +1 -1 2 -1/2
φ -1 +1 2 1/2
χ 0 -1 1 0

Superpotential:
W 3 λNφHu + hLφχ+Mφφφ (119)
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Integrate out φ and φ:

λh
NHuLχ

Mφ
−→ λh

〈χ〉
Mφ

NHuL (120)

2.3 Gravitino problem

For leptogenesis to be effective: M1 > 2× 109 GeV. Thus, the reheating temperature has
to be TRH > 2× 109 GeV.

High TRH leads to overproduction of light states (i.e. gravitinos)

(i) If gravitinos are stable (i.e. LSP), WMAP constraint on DM ⇒ stringent bound on
gluino mass for any gravitino mass m3/2 and TRH .

(ii) If gravitinos are unstable, it has long lifetime and decays during and after BBN

gravitinos may have three effects on BBN:

1. speeds up cosmic expansion: increase n/p ratio and thus 4He aboundance

2. radiation decay of gravitinos reduces nB/nγ : ψ → γ + γ̃

3. high energy photons emitted in gravitino decays destroy light elements (D, T, 3He,
4He) through photo-dissociation reactions

Table 2: photo-dissociation reactions
reaction threshold (MeV)
D + γ → n+ p 2.225
T + γ → n+D 6.257
T + γ → p+ n+ n 8.482
3He+ γ → p+D 5.494
4He+ γ → p+ T 19.815
4He+ γ → n+3 He 20.578
4He+ γ → p+ n+D 26.072

Observational constraints:

0.22 < Yp = (ρ4He/ρB)p < 0.24 (121)
(nD/nH) > 1.8× 10−5 (122)

(
nD + n3He

nH
)p < 10−4 (123)
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Thermal production of gravitinos governed by Boltzmann equation:

d

dt
n3/2 + 3Hn3/2 '

〈∑
tot

v

〉
· n2

light (124)

where∑
tot
∼ 1/M2

pl: total cross section determining the rate of production of gravitinos

nlight ∼ T 3: number density of light particles in thermal bath

the most stringent constraint: (D +3 He) which requires gravitino abundance to be

n3/2

s
' 10−2TRH

MPl

≤ 10−12 (125)

Thus
TRH < 108−9 GeV (126)

Upper bounds on reheating temperature:

m3/2 ≤ 100 GeV : TR ≤ 106−7 GeV
100 GeV ≤ m3/2 ≤ 1 TeV : TR ≤ 107−9 GeV
1 TeV ≤ m3/2 ≤ 3 TeV : TR ≤ 109−12 GeV
3 TeV ≤ m3/2 ≤ 10 TeV : TR ≤ 1012 GeV

(127)

More recently, it has been shown that, for hadronic decay modes, ψ → g + g̃, the bounds
are even more stringent, TR < 106−7 GeV.

There is therefore a conflict between generation of sufficient amount of leptogenesis and
not overly producing gravitinos
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3 Lecture III: non-standard scenarios

3.1 Resonance leptogenesis

In the limit MNi −MNj �MNi , the self-energy diagrams dominate:

εSelf
Ni

=
Im[(hνh

†
ν)ij ]2

(hνh
†
ν)ii(hνh

†
ν)jj

[ (M2
i −M2

j )MiΓNj

(M2
i −M2

j )2 +M2
i Γ2

Nj

]
(128)

When M2
1 −M2

2 ∼ ΓN2 , the asymmetry can be enhanced

CP asymmetry of O(1) possible when

M1 −M2 ∼
1
2
Γ1,2 (129)

Im(hνh
†
ν)2ij

(hνh
†
ν)ii(hνh

†
ν)jj

∼ 1 (130)

Thus the required RH neutrino mass scale can be significantly lower.

3.2 Soft leptogenesis

CP violation can arise in two ways:

• CPV in decays ⇒ standard leptogenesis

• CPV in mixing ⇒ soft leptogenesis

recall in Kaon system: mismatch between CP eigenstates and mass eigenstates

⇒ CPV 6= 0

CP eigenstates: 1√
2
(|K0〉 ± |K0〉)

time evolution of the systemdescribed by Schroedinger equation:

d

dt

(
K0

K
0

)
= H

(
K0

K
0

)
(131)

where H = M− i
2A.

M12: dispersive part of the transition amplitude
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A12: absorptive part of the ampplitude

|KL〉 = p|K0〉+ q|K0〉 (132)

|KS〉 = p|K0〉 − q|K0〉 (133)

non-vanishing CPV ⇒ |pq | 6= 1

(
q

p

)2

=
(

2M∗
12 − iA∗12

2M12 − iA12

)
(134)

In soft leptogenesis, the relevant Lagrangian involving lightest RH sneutrino:

−L = [
1
2
BM1ν̃R1 ν̃R1 +Ay1iL̃iν̃R1Hu + h.c.] + m̃2ν̃†R1

ν̃R1 (135)

the superpotential that involves the lightest RH Sneutrino:

W = M1N1N1 + y1iLiN1Hu (136)

⇒ these give the following interactions and mass terms:

−LA = ν̃[M1y
∗
1i

˜̀∗
iH

∗
u + y1iH̃u`

i
L +Ay1i

˜̀
iHu] + h.c. (137)

−Lm = [M2
Aν̃

†
R1
ν̃R1 +

1
2
BM1ν̃R1 ν̃R1 ] + h.c. (138)

mixture of ν̃R1 and ν̃†R1
leads to eigenstates with definite masses

M± 'M1

(
1± |B|

2M1

)
(139)

the time evolution of the system:

d

dt

(
ν̃†R1

ν̃R1

)
= H

(
ν̃†R1

ν̃R1

)
, H = M− i

2
A (140)

where

M =

(
1 B∗

2M1
B∗

2M1
1

)
M1, A =

(
1 A∗

M1
A∗

M1
1

)
Γ1 (141)
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physical eigenstates:
ÑL = pν̃†R1

+ qν̃R1 , ÑH = pν̃†R1
− qν̃R1 (142)

where (
q

p

)2

' 1 + Im

(
2Γ1A

BM1

)
non-vanishing CPV ⇒ Im

(
2Γ1A

BM1

)
6= 0 (143)

Thus total asymmetry

ε =

∑
f

∫∞
0 [Γ(ν̃R1 , ν̃

†
R1
→ f)− Γ(ν̃R1 , ν̃

†
R1
→ f)]∑

f

∫∞
0 [Γ(ν̃R1 , ν̃

†
R1
→ f) + Γ(ν̃R1 , ν̃

†
R1
→ f)]

(144)

=
(

4Γ1B

4B2 + Γ2
1

)
·
(
Im(A)
M1

)
(145)

where the final states f = (L̃H), (LH̃) with L=+1, and f = (L̃†H†), (L, H̃) with L=-
1.

ε =
(

4Γ1B

4B2 + Γ2
1

)
·
(
Im(A)
M1

)
δB−L (146)

where δB−L takes into account the thermal efects due to difference between occupation
numbers of bosons and fermions

nB

s
' −cdν̃Rεκ (147)

c = 8NF +4NH
22NF +13NH

: amount of B-L asymmetry being converted into B asymmetry

dν̃R = 45ζ(3)/(π4g∗): density of lightest sneutrino in equilibrium in units of entropy den-
sity

For Γ1 = 2B:

R ≡ 4Γ1B

Γ2
1 + 4B2

= 1 : resonance condition (148)

total decay width: Γ1 = 1
4π (yνy

†
ν)11M1

3.3 Non-thermal leptogenesis

non-thermal leptogenesis via inflaton decay
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inflation → solve the horizon and flatness problem → accounts for the origin of density
fluctuations

assume inflaton decays dominantly into a pair of lightest RH neutrinos

Φ → N1 +N1, ⇒ mΦ > 2M1 (149)

for simplicity, also assume that the decay modes into N2,3 are energetically forbidden

The produced N1 then subsequently decays into H + `L and H† + `†L

If TR < M1 ⇒ out-of-equilibrium condition automatically satisfied

CP asymmetry generated by interference of tree level and one-loop diagrams:

ε = − 3
8π

M1

〈H〉2
m3δeff (150)

where

δeff =
Im

{
h2

13 + m2
m3
h2

12 + m1
m3
h2

11

}
|h13|2 + |h12|2 + |h11|2

(151)

Numerically,

ε ' −2× 10−6

(
M1

1010GeV

)(
m3

0.05eV

)
δeff (152)

The chain decays Φ → N1+N1 and N1 → H+`L or H†+`†L reheat the Universe producing
not only the lepton number asymmetry but also the entropy for the thermal bath

Ratio of lepton number to entropy density after reheating:

nB

s
' −3

2
ε
TR

mΦ
' 3× 10−10

(
TR

106GeV

)(
M1

mΦ

)(
m3

0.05eV

)
(153)

assuming δeff = 1.

3.4 Connection between leptogenesis and neutrino oscillation

3.4.1 Models with 2 RH neutrinos

To cancel the Witten anomaly ⇒ 2 RH neutrinos
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⇒ 3× 2 seesaw:

L =
1
2
(N1 N2)

(
M1 0
0 M2

)(
N1

N2

)
+ (N1 N2)

(
a a′ 0
0 b b′

) `1
`2
`3

H + h.c. (154)

The effective neutrino mass matrix:

M eff
ν = MLRM

−1
RRM

T
LR =


a2

M1

aa′

M1
0

aa′

M1

a′2

M1
+ b2

M2

bb′

M2

0 bb′

M2

b2

M2

 (155)

where a, b b′ are real, and a′ = |a′|eiδ.

If δ = 0 and a′ =
√

2a, b = b′, a2

M1
� b2

M2
:

⇒ mν1 = 0, mν2 = 2a2

M1
, mν3 = 2b2

M2

U =

 1/
√

2 1/
√

2 0
−1/2 1/2 1/

√
2

1/2 −1/2 1/
√

2

 ·
 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

 , θ ' mν2√
2mν3

(156)

B ∝ ξB = Y 2a2b2 sin 2δ, ξosc = −
(

a4b4

M3
1M

3
2

)
(2 + Y 2)ξB ∝ −B (157)

⇒ sign of CPV of neutrino oscillation and that in leptogenesis are related

3.4.2 Models with spontaneous CP violation (& triplet leptogenesis)

minimal LR model:

gauge group:

SU(3)c × SU(2)L × SU(2)R × U(1)B−L × P → SU(3)c × SU(2)L × U(1)Y (158)

Q = T3,L + T3,R +
1
2
(B − L)

Particle content:

• fermions:

Qi,L =
(
u
d

)
i,L

∼ (1/2, 0, 1/3), Qi,R =
(
u
d

)
i,R

∼ (0, 1/2, 1/3)

Li,L =
(
e
ν

)
i,L

∼ (1/2, 0,−1), Li,R =
(
e
ν

)
i,R

∼ (0, 1/2,−1)
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• scalars:

Φ =
(
φ0

1 φ+
2

φ−1 φ0
2

)
∼ (1/2, 1/2, 0)

∆L =
(

∆+
L/
√

2 ∆++
L

∆0
L −∆+

L/
√

2

)
∼ (1, 0, 2)

∆R =
(

∆+
R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

)
∼ (0, 1, 2)

Under parity:
ΨL ↔ ΨR, ∆L ↔ ∆R, Φ ↔ Φ† (159)

In general:

〈Φ〉 =
(
κeiακ 0

0 κ′eiακ′

)
, 〈∆L〉 =

(
0 0

vLe
iαL 0

)
, 〈∆R〉 =

(
0 0

vRe
iαR 0

)
(160)

To get realistic SM gauge boson masses:

κ2 + κ′2 '
2M2

W

g2
' (174GeV )2 (161)

Two triplet vev’s are related:

vL = β
κ2

vR
(162)

The Lagrangian is invariant under the following unitary transformations,

UL =
(
eiγL 0
0 e−iγL

)
, UR =

(
eiγR 0
0 e−iγR

)
(163)

Under these unitary transformations, the fermions and scalars transform as,

ΨL → ULΨL, ΨR → URΨR

Φ → URΦU †L, ∆L → U∗L∆LU
†
L, ∆R → U †R∆RU

†
R

Thus the vev transform as

κ→ κe−i(γL−γR), κ′ → κ′ei(γL−γR), vL → vLe
−2iγL , vR → vRe

−2iγR (164)

Using these unitary transformations, we can rotate away 2 of the 4 phases:

〈Φ〉 =
(
κ 0
0 κ′eiακ′

)
, 〈∆L〉 =

(
0 0

vLe
iαL 0

)
, 〈∆R〉 =

(
0 0
vR 0

)
(165)

Yukawa sector:
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• quarks:
−Lq = Qi,R(FijΦ +GijΦ)Qj,L + h.c. (166)

where Φ = τ2Φ∗τ2

mass matrix:

Mu = Fijκ+Gijκ
′e−iακ′ , Md = Fijκ

′eiακ′ +Gijκ (167)

– all Yukawa couplings real (SCPV)

– ακ′ responsible for all CPV in quark sector

– to suppress FCNC: κ/κ′ ' mt/mb � 1

• leptons:

−L` = Li,R(PijΦ +RijΦ)Lj,L + fij(LT
i,L∆LLj,L + LT

i,R∆RLj,R) + h.c. (168)

mass matrix:

Me = Pijκ
′eiακ′ +Rijκ (169)

MDirac
ν = Pijκ+Rijκ

′e−iακ′ , MLL
ν = fijvLe

iαL , MRR
ν = fijvR (170)

Thus

M eff
ν = M II

ν −M I
ν = (feiαL − 1

β
P T f−1P )vL (171)

M I
ν = (MDirac

ν )T (MRR
ν )−1(MDirac

ν ) (172)
= (κP + κ′e−iακ′R)T (vRf)−1(κP + κ′e−iακ′R)

' vL

β
P T f−1P

M I
ν = vLe

iαLf (173)

⇒ the 3 low energy phases δ, α21, α31, are function of αL

they appear in

• neutrino oscillations: J `
CP ∝ sinαL

• 0ν2β decay

• leptogenesis
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Triplet leptogenesis: two ways to generate lepton number asymmetry

1. N1 → `+H†

ε =
Γ(N1 → `+H†)− Γ(N1 → `+H)
Γ(N1 → `+H†) + Γ(N1 → `+H)

(174)

2. ∆∗ → `+ `

ε =
Γ(∆∗

L → `+ `)− Γ(∆L → `+ `)
Γ(∆∗

L → `+ `) + Γ(∆L → `+ `)
(175)

Whether N1 decay dominates or ∆L decay dominates depends upon if N1 is heavier or
lighter than ∆L

a natural scenario is that the triplet Higgs is heavier than the lightest RH neutrino

⇒ N1 decay dominates

Two types of diagrams contribute:

(A) those that appear in standard leptogenesis:

ε =
3

16π

(
M1

v2

)Im[MD(M I
ν )∗MT

D

]
11

(MDM
†
D)11

= 0 (176)

(B) the new contribution:

ε =
3

16π

(
M1

v2

)Im[MD(M II
ν )∗MT

D

]
11

(MDM
†
D)11

∝ sinαL (177)

Results independent of the choice of the unitary transformations

3.5 New developments, Open questions

• Previous solutions to Boltzmann equations did not include flavor dependence: it has
recently been shown that flavor effects matter if heavy neutrino masses are hierar-
chical [hep-ph/0605281]

• A Fundamental problem: Boltzmann equations used in present calculations: clas-
sical treatment, yet include collision terms that are zero-temperature S-matrix ele-
ments which involve quantum interference; also, time evolution of the system should
be treated quantum mechanically.

31



⇒ need quantum Boltzmann equations ⇒ Closed-Time-Path (CTP) formalism ⇒
KT’s PhD thesis [see Riotto’s ICPT lecture: hep-ph/9807454 Sec. 7.2]
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